

A Compliant Privacy Protocol on Solana
A Next-Generation Wallet and Token

Ecosystem Built for Speed, Security, and
Institutional Confidence.

 WhitePaper V1.0 - November 2025  

Noctura WhitePaper

Email: privacy@noc-tura.io

Website: www.noc-tura.io

1. Introduction

1.1 Vision & Mission

Noctura is built on a fundamental principle: privacy is a human right, not a
privilege. In an era where every blockchain transaction is permanently recorded and
publicly traceable, financial privacy has become a critical vulnerability rather than a
protected freedom.

Our vision is to establish a new paradigm for blockchain privacy—one that doesn't force
users to choose between confidentiality and compliance, between security and usability,
or between privacy and participation in the mainstream financial ecosystem.

Noctura delivers the first shielded privacy layer on Solana, combining
institutional-grade cryptography with a user-friendly dual-mode wallet that makes
privacy accessible to everyone—from individual users protecting their financial dignity to
enterprises managing confidential treasury operations.

mailto:privacy@noc-tura.io
http://www.noc-tura.io

We believe the future of blockchain finance must include privacy as a foundational
feature, not an afterthought. Noctura makes this future possible today.

Design goals.

• Usability first: one-tap privacy with clear prompts and safe defaults.

• Provable correctness: zero-knowledge verification anchored on-chain.

• Compliance readiness: selective disclosure when required, not blanket
surveillance.

• Realistic performance: conservative throughput targets and staged
optimizations (batching, aggregation, GPU proving).

• Security by process: audits, formal review of circuits, bug bounties, incident
response.

1.2 What Noctura Is (Compliance-First Privacy
Infrastructure + Dual-Mode Wallet)

Shielded Privacy Layer on Solana. 
A protocol that maintains commitments, nullifiers, and Merkle roots on Solana.
Proofs are generated off-chain and verified on-chain by lightweight programs that
update shielded state. This is a privacy overlay, not an L2 rollup.

Dual-Mode Wallet (primary interface).

• Transparent Mode (public): behaves like a standard Solana wallet for full
DeFi/NFT compatibility.

• Shielded Mode (private): sender, receiver, and amount are hidden; transfers
update shielded state via zk proofs.

• Cross-Mode transfers: public ↔ shielded with unlinkability guarantees.

• Selective disclosure: View Keys (scoped read access) and Audit Tokens
(consent-bound assertions) let users prove legitimacy to exchanges/partners
without exposing their full history.

• Developer SDKs: simple methods to send shielded tx, request disclosures, and
integrate compliance prompts.

Performance posture (realistic). 
We target hundreds of shielded TPS at launch, scaling via batching, proof
aggregation, and GPU provers. zk proof generation is computationally intensive; on-

chain verification and Solana runtime limits make “65,000 TPS shielded” not realistic
and we do not claim it.

1.3 Key Differentiators & Compliance-Ready
Design

1) Wallet-first UX. 
Privacy is a toggle, not a new chain. Clear threshold prompts, geo-fencing where
required, and educational tooltips reduce user error.

2) ZK-native unlinkability (no mixer dependency). 
Properly constructed shielded transfers already break linkability. We avoid
“advanced mixing” as a core dependency; any future mixer-style batching would be
optional and scoped to UX/fee behavior, not anonymity.

3) Proof system pragmatism. 
A SNARK-first design provides succinct proofs with fast verification. STARKs are an
optional roadmap module (e.g., for large batch audits or post-quantum posture)
and will only be introduced when there is a clear, measured benefit.

4) Selective disclosure done right.

• View Keys: scoped (tx, time window, balance range), revocable.

• Audit Tokens: consent-bound, expiring credentials that validate facts (KYC
pointer, origin proof) without revealing raw history.

5) Compliance survival, not evasion.

• Transparent-by-default onboarding; private mode is opt-in.

• KYC/Travel-Rule adapters for partners; restricted jurisdictions enforced
via geo-fencing/KYC country.

• Team KYC and contract audits are published before listings.

• On-chain presale with public contract address for verifiability.

6) Security process, not slogans.

• Third-party audits of presale/token/verification programs.

• Cryptography reviews of circuits and parameters.

• Bug bounty and runtime anomaly detection.

• Documented incident response and upgrade path via guarded governance.

7) Sustainable economics.

• Token used for shielded fees and prover/relayer incentives.

• Staking tiers post-TGE (APR 128%/68%/34% for 365/182/90-day locks).

• DAO-governed parameters, with optional fee-burn to align long-term value.

Result. Noctura is the first shielded privacy layer on Solana with a dual-mode
wallet that makes private, compliant transactions practical—focusing on usable privacy,
measured performance, and verifiable security.

2. Project Overview

2.1 Mission & Principles (Privacy with Legitimacy)

Mission. Make private transactions on Solana usable, verifiable, and compliant—
so individuals and institutions can choose confidentiality without sacrificing speed,
security, or market access.

Principles.

• User choice: Transparent by default; opt-in shielded mode with clear consent.

• Provable correctness: Zero-knowledge proofs verified on-chain; no “trust me”
privacy.

• Selective disclosure: Fine-grained View Keys and Audit Tokens for lawful
proofs without bulk deanonymization.

• Pragmatism > hype: Realistic throughput, staged optimizations, measured
feature rollout.

• Security as a process: Audits, formal reviews, bug bounty, incident response,
and guarded governance.

• Compliance survival: Geo-fencing, threshold prompts, KYC/Travel-Rule
adapters; published legal/audit artifacts.

2.2 Positioning on Solana (Privacy Overlay, not a
rollup)

What it is. A shielded privacy overlay that maintains commitments, nullifiers, and
Merkle roots on Solana. Proofs are generated off-chain and verified by Solana
programs that update shielded state.

What it is not.

• Not a sidechain, bridge, or EVM-style rollup.

• Not a mixer-only system; unlinkability derives from robust ZK design.

Why this fits Solana.

• Uses Solana for finality, availability, and composability, while moving
heavy proving off-chain.

• Targets hundreds of shielded TPS initially; scales via batching, aggregation,
and GPU provers—not “65k TPS” claims.

• Integrates with existing DeFi/NFT apps via a lightweight Wallet SDK and
Verifier Program interfaces.

2.3 Users & Use Cases (Individuals, Traders,
Enterprises)

Individuals (privacy & safety)

• Private payments & remittances: Hide salary, gifts, and recurring payments
from public graphs.

• Financial safety: Reduce doxxing, extortion risk; keep balances and
counterparties confidential.

• Selective proofs: Provide scoped proofs of funds to ramps/exchanges
without revealing history.

Traders & Funds (strategy protection)

• Front-run resistance: Execute swaps, reallocations, and rebalances privately
to avoid copy-trading and MEV-style inference.

• Treasury moves: Move inventory and collateral without telegraphing intent.

• Audit on demand: Prove asset origin/solvency to counterparties via Audit
Tokens.

Enterprises & Institutions (confidential operations)

• Payroll & vendor settlement: Confidential flows with verifiable compliance.

• Treasury & M&A: Conceal strategic movements; disclose only to auditors/
regulators as required.

• Policy controls: Scoped view access for finance, compliance, and external
auditors; revocation and expiry baked in.

Developer & ecosystem integrations

• Wallet SDK hooks: sendShieldedTx, crossModeTransfer,
generateViewKey, issueAuditToken.

• dApp patterns: Private swaps, shielded lending/repayment, NFT settlement
with selective provenance.

• Compliance adapters: Travel-Rule providers, KYC hash-pointers, and geo-rules
enforced at wallet boundary.

Outcome. Noctura delivers usable, compliant privacy for everyday users,
competitive traders, and regulated enterprises—on Solana, with a dual-mode wallet
that makes switching between public and private flows trivial.

3. Noctura Privacy Wallet

3.1 Dual-Mode UX: Transparent (Public) vs
Shielded (Private)

• Transparent Mode (default): Standard Solana account (Ed25519). Full
compatibility with DeFi/NFT apps; transactions are public on-chain.

• Shielded Mode (opt-in): Wallet derives shielded keys and maintains private
balances in the shielded state (commitments/nullifiers/Merkle root). Sender,
receiver, and amount are hidden; validity is enforced by zk-proofs.

• One-tap toggle: The wallet surfaces a clear Public ↔ Private switch with

legal/geo prompts where required. Mode and fee estimates are shown prior to
signing.

• Predictable fees: UX shows (i) shielded fee in $NOC, (ii) expected
confirmation window (batch/aggregation latency), and (iii) disclosure
requirements if thresholds are crossed.

3.2 Cross-Mode Transfers (Public ↔ Shielded) with

Unlink-ability

• Public → Shielded (Deposit):

1. User funds a deposit program; 2) wallet creates a commitment C =
Commit(sk, amt, r) and submits zk-proof of well-formedness; 3) on-chain
verifier updates Merkle root; 4) shielded note appears in private balance. 
Linkability: Broken at the proof boundary—no public link to the resulting
note.

• Shielded → Public (Withdraw):

1. Wallet spends a note using a nullifier N; 2) zk-proof shows note
membership + non-spent; 3) verifier marks N and releases public funds to a
chosen address. 
Unlinkability: Exit address is not linkable to the original deposit or prior
shielded hops.

• Shielded → Shielded (Transfer): 
Multi-output spend with change; zk-proof updates commitments and nullifiers
atomically. No address/amount reveal.

• Best practices: randomized timing, output aliasing, and batch joins to
strengthen anonymity sets.

3.3 Selective Disclosure: View Keys & Audit
Tokens (Scopes, TTL, Revocation)

• View Keys (read-only):

◦ Scope: single transaction, time window, balance range, or proof-of-funds.

◦ Derivation: from user’s disclosure branch key; never grants spend
authority.

◦ Revocation: local list + on-chain revocation registry (hash pointer) for
partners to honor.

• Audit Tokens (consent-bound assertions):

◦ Payload: {auditor_pubkey, scope, ttl, zk_assertions[], nonce,
sig_user}.

◦ Use cases: KYC proof-of-origin, solvency attestations, Travel-Rule data
exchange.

◦ Expiry/TTL: enforced by wallet and partner API; short-lived by default.

• Privacy guarantee: Disclosures reveal facts (e.g., “origin KYC-verified,”
“balance ≥ X”)—not raw transactions or counterparties.

3.4 Developer SDKs: dApp Adapters, Wallet API
Hooks

• Client APIs (TypeScript/Rust):

◦ sendTransparentTx(txSpec) → standard Solana send.

◦ sendShieldedTx({outputs[], memo?, feeToken: NOC}) → builds proof
client-side; submits to verifier.

◦ crossModeTransfer({direction, amount}) → deposit/withdraw helpers
with unlinkability defaults.

◦ generateViewKey({scope, ttl}) / revokeViewKey(viewKeyId)

◦ issueAuditToken({auditor, scope, ttl, assertions[]})

• Adapter pattern: Drop-in wrappers for common flows (DEX swap, transfer,
repay, NFT settle) with “private preferred” routing if supported.

• Errors & telemetry: Standardized codes (ZK_PROOF_TIMEOUT,
NULLIFIER_REPLAY, GEO_RESTRICTED) and optional privacy-preserving
telemetry for UX improvements (opt-in).

3.5 Compliance UX: Threshold Prompts, Geo-
fencing, KYC Pointers

• Threshold prompts: Client checks soft/hard thresholds (e.g., value > regional
cap). UI suggests creating an Audit Token or performing KYC when needed.

• Geo-fencing: Wallet disables Shielded Mode in restricted jurisdictions based on
IP + KYC country (defense-in-depth); transparent mode remains unaffected.

• KYC pointers: For custodial ramps/exchanges, wallet can attach a KYC hash
pointer within an Audit Token—verifiable by the partner without exposing
identity data in-wallet.

• Travel-Rule adapters: Optional integration paths to providers (e.g.,
Notabene/OpenVASP-style) triggered only for applicable flows.

3.6 Security Model: Key Management, Local
Secrets, Multi-Sig Options

• Key hierarchy:

◦ Public keys: standard Solana Ed25519 for transparent accounts.

◦ Shielded keys: derived spend/view keys for commitments/nullifiers;
stored locally (Secure Enclave/Keychain/Keystore when available).

◦ Disclosure branch: separate derivation path for View Keys/Audit Tokens
to minimize blast radius.

• Local security:

◦ Encrypted at rest; biometric/PIN gating for spends; anti-phishing signer
screens (human-readable tx intents).

◦ Optional passphrase shard (Shamir) for social recovery.

• Multi-sig / enterprise:

◦ Shielded multi-sig via MPC/threshold signing for spend authorization; view
access scoped per role (finance, compliance, auditor).

◦ Policy engine: amount/day caps, mandatory dual-control on exits, auto-
issuance of Audit Tokens for regulated flows.

• On-chain safeguards:

◦ Nullifier set to prevent double-spends; rate-limit guards; circuit
versioning with upgrade gates.

◦ Slashing hooks for misbehaving provers/relayers (liveness/validity), with
rewards redistributed to honest participants.

• Operational security: formal audits (wallet + verifier + circuits), bug bounty,
anomaly detection (e.g., unexpected nullifier patterns), and documented incident
response with paused-mode fallback under governed controls.

4. Protocol Architecture - Shielded
Privacy Layer on Solana

4.1 High-Level Design (Commitments, Nullifiers,
Merkle State)

• Model. Noctura maintains a shielded state on Solana defined by a
commitment set, a nullifier set, and a Merkle root:

◦ Commitment (C): a binding of note contents (amount, recipient key,
randomness) using a collision-resistant hash.

◦ Nullifier (N): a one-time marker derived from a spent note’s secret to
prevent double-spends without revealing the note.

◦ Merkle Root (R): the on-chain commitment tree root; membership proofs
show a note exists in the tree.

• Transactions. A shielded transfer consumes one or more existing notes (proving
membership and non-replay via nullifiers) and creates one or more new notes
(emitting new commitments). Balances never appear in plaintext; only R, new Cs,
and Ns are written on-chain.

• Privacy guarantees. Sender, receiver, and amounts are hidden; linkability
between inputs and outputs is computationally infeasible under the hash and ZK
assumptions.

4.2 Off-Chain Proving, On-Chain Verification
(State Anchoring)

• Proving (off-chain). Clients (or delegated provers) generate zk proofs for:

◦ Membership: each input note exists in the current (or recent) R.

◦ Non-replay: each input emits a unique N unlinked to the note.

◦ Balance conservation: sum(inputs) = sum(outputs) + fees.

• Verification (on-chain). A Solana verifier program checks proof validity,
updates the Merkle tree with new commitments, and inserts nullifiers into the
nullifier set atomically. Invalid proofs are rejected; duplicated Ns revert.

• Anchoring & finality. Every accepted batch updates R deterministically;
Solana finality implies final shielded state after confirmation. Off-chain UIs
track the canonical R and recent roll-forward path.

4.3 Proof System Strategy (SNARK-first; STARK
optional roadmap)

• SNARK-first. Initial circuits use succinct zk-SNARKs (Groth16/PLONK family) to
minimize verification cost and calldata size—well suited to frequent payments.

• Aggregation. Support for proof aggregation (or succinct batch verification)
reduces on-chain verifier cost per transfer as activity grows.

• STARK as option. zk-STARKs (transparent setup, PQ posture) are an optional
module for large audits or compliance proofs where bigger proof size is
acceptable. They are not required for private payments and are avoided until a
clear benefit outweighs complexity.

4.4 Performance Constraints & Realistic
Throughput Targets

• Reality over slogans. zk proving is compute-heavy; on-chain verification and
account updates consume Solana compute units. “65,000 TPS” for fully shielded
transfers is not realistic.

• Launch targets.

◦ Single-tx verification: tens of ms on-chain; practical ceiling limited by
CU budget.

◦ Throughput (payments): ~100–300 shielded TPS with baseline
batching/aggregation under typical mainnet limits.

◦ Latency: ~1–3s median confirmation (proof ready) depending on client
hardware/prover lanes.

• Scale levers.

◦ Batching & aggregation: verify 𝑘 transfers per proof to amortize
verifier cost.

◦ Recursive proofs: aggregate many sub-proofs into one outer proof.

◦ Parallel provers & GPU lanes: reduce client/prover wait times;
marketplace for throughput.

◦ Circuit hygiene: Pedersen/Poseidon-style hashes; fixed-base MSM
optimization; shallow trees for hot paths.

• Degradation plan. Under load, the wallet dynamically shifts to larger batches
(higher latency, higher TPS) with user-visible estimates.

4.5 State Commitments & Data Availability
(Anchors, Epochs, Finality)

• Anchors & epochs. Each verified batch references an anchor root (recent R)
and produces a new root; epoch checkpoints (e.g., every N slots) are recorded
for fast syncing and compact membership proofs.

• Tree management. An append-only Merkle tree (sparse or incremental) is
maintained on-chain; witnesses are updated off-chain. Clients can follow proof-
carrying updates (PCU) to refresh paths without full re-sync.

• Data availability. On-chain events emit new commitments, nullifiers, and the
updated root; indexers (wallets, explorers) mirror these for users. No private
data is required for liveness.

• Reorg handling. In rare reorgs, clients re-anchor to the latest finalized root and
revalidate pending proofs; the verifier rejects stale-anchor submissions.

4.6 Prover/Relayer Participation & Incentives
(Staked Roles, Slashing Hooks)

• Roles.

◦ Provers: generate zk proofs on behalf of users/dApps; selectable via a
fee market.

◦ Relayers (optional): submit transactions and pay fees upfront for users
who want extra network privacy; reimbursed in-protocol.

• Staking & fees.

◦ Operators stake $NOC to register; misbehavior risks slashing.

◦ Fee market: users pick lanes by price × latency; wallet defaults to
reputable operators.

◦ Rewards paid in $NOC (and/or a portion of shielded fees); optional fee-
burn introduces mild deflation.

• Slashing conditions.

◦ Invalid proofs / malformed batches → verifier-detectable faults.

◦ Relayer theft/fraud (e.g., non-delivery) → challenge windows with
evidence; slashed stake redistributed to affected users and honest
operators.

• Liveness & QoS. Operators publish SLOs (max queue time, proof latency);
wallet health checks route away from degraded lanes; DAO parameters can set
minimum stake, maximum share, and emergency throttles.

Result. The architecture prioritizes provable privacy, realistic performance, and
operational safety: succinct SNARK payments today, optional STARKs later; off-
chain proving with on-chain finality; clear incentives and guardrails for the operators
who keep the shielded layer fast and reliable.

5. Security Model & Threat Analysis

5.1 Adversary Model (Network, Cryptographic,
Economic)

Network adversaries.

• DoS/Spam: saturate verifier CUs or prover queues to degrade UX.

• Traffic analysis: correlate timing, size, and network paths to infer parties.

• Relayer abuse: censor, reorder, or front-run user submissions (for public exits).

Cryptographic adversaries.

• Soundness attacks: attempt to forge zk proofs / bypass nullifier checks.

• Collision attacks: target hash primitives (commitments, Merkle tree).

• Key compromise: exfiltrate wallet keys (public or shielded); side-channel on
client devices.

Economic adversaries.

• Operator misbehavior: provers/relayers deliver low quality, stall, or cheat
fees.

• MEV-style inference: correlate shielded exits with public market activity.

• Sybil concentration: many small operators controlled by one actor to bias
routing.

Assumptions.

• Standard hardness for chosen zk proof system (SNARK today; STARK optional).

• Collision resistance of chosen hash (Poseidon/Pedersen family).

• Solana consensus/finality and L1 availability.

• Honest-majority not required for privacy/soundness (verification is on-chain).

5.2 Formal Verification & Circuit Audits (Plan &
Scope)

Specification first.

• State machine spec: commitments, nullifiers, Merkle updates, anchor rules,
and rejection conditions.

• Conservation invariant: Σinputs = Σoutputs + fees (mod base units).

• Replay invariant: nullifier uniqueness is required and sufficient to prevent
double-spends.

Circuit reviews.

• Math review: constraint systems, range proofs (amount), membership proofs
(Merkle path), spend authorization.

• Witness handling: zeroization, bounds checks, domain separators, transcript
binding.

• Test vectors: pathological inputs (duplicate paths, stale roots, zero-amounts,
max amounts).

Program verification.

• On-chain verifier: formal properties (reject-on-fail, atomicity of R, C[], N[]
updates).

• Tree logic: append, root rotation, epoch checkpoints.

• Access control: parameter governance, pause gates, upgrade keys with
timelock.

Audit cadence.

• Phase I (presale/token): presale & token mint programs.

• Phase II (testnet privacy): verifier, tree ops, nullifier set.

• Phase III (pre-mainnet): circuits + wallet cryptography + SDK signing flows.

• Continuous: re-audit after circuit or parameter changes.

5.3 Replay/Linkability Risks & Mitigations

Replay & double-spend.

• Nullifier set is on-chain; duplicates revert atomically.

• Anchor freshness: proofs must reference a recent root within an epoch
window; stale-anchor proofs rejected.

• Nonce discipline: unique randomness per note & proof transcript binding.

Linkability vectors.

• Timing correlation: deposits/exits aligned in time. → Mitigation: randomized
submit windows, relayer batching, optional delays.

• Amount correlation: exact amounts across modes. → Mitigation: output
aliasing (split/join), wallet rounding bands, change outputs.

• Network metadata: IP/ASN persistence. → Mitigation: relayers as privacy
egress, optional Tor/VPN guidance, transport padding.

• UI fingerprints: deterministic behavior. → Mitigation: randomized fees within
band, jittered batching thresholds.

Exit hygiene.

• Prefer fresh public addresses for exits; avoid immediate reuse; optional delay
before exit settlement.

5.4 Runtime Monitoring, Anomaly Detection,
Incident Response

Monitoring.

• On-chain signals: nullifier collision rate, proof failure ratio, root-advance
cadence, verifier CU burn, queue depth.

• Operator SLOs: prover/relayer latency distributions, timeouts, error codes.

• Pattern detection: bursts near thresholds, unusual tree growth, repeated
anchor staleness.

Alerts & thresholds.

• Automated alerts on: excessive proof rejects, root stagnation, spike in duplicate
nullifiers, CU saturation, operator liveness failures.

Incident response.

• Playbooks: categorization (P0–P3), communication templates, rollback/patch
guidance.

• Controls:

◦ Rate limits (per account/per epoch) to throttle abuse.

◦ Emergency pause on shielded submit while preserving read access.

◦ Circuit/param rollback behind timelocked governance; hotfix key used
only under DAO-defined conditions.

• Forensics: retain minimal, privacy-preserving logs (hashes, event IDs) for post-
mortems; never store plaintext notes.

5.5 Bug Bounties & Responsible Disclosure

Program scope.

• Wallet cryptography (key derivation, signing prompts, disclosure branch).

• Verifier programs (proof checks, tree ops, nullifier uniqueness).

• Circuits (soundness, constraint completeness, witness mishandling).

• SDK (transaction intent encoding, replay protection).

• Website/presale contracts (authZ/authN, funds safety).

Rewards & process.

• Tiered payouts by severity (RCE/Key exfiltration > forging spend > DoS > info
leak).

• Safe harbor: good-faith research protected; coordinated disclosure timelines.

• Hall of Fame: optional public credit, with consent.

• Re-audit trigger: critical findings mandate third-party re-audit and changelog
publication.

Submission hygiene.

• Minimal PoCs preferred; no user data collection; reproduce with test vectors.

• Provide environment details (SDK version, device/OS, RPC cluster).

• Use dedicated security email + PGP; response SLA published.

Goal. Create a continuous security feedback loop where independent
researchers, auditors, and the community can verify—and improve—the safety of
Noctura’s shielded layer without compromising user privacy.

6. Compliance & Selective Disclosure

6.1 Opt-In Privacy Model (Transparent by Default)

• Default posture: Wallet initializes in Transparent Mode (standard Solana
account). Shielded Mode is explicitly enabled by the user with an in-wallet
consent screen outlining jurisdictional limits and disclosure options.

• Granularity: Privacy can be applied per-account or per-transaction. The
wallet surfaces when a flow may require selective disclosure (e.g., fiat off-ramp,
large exits).

• Data minimization: The protocol never stores PII. Compliance is achieved via
cryptographic attestations and user-controlled disclosures, not persistent
identity records.

6.2 View Keys & Audit Tokens (Interfaces,
Scoping, Revocation)

Purpose. Allow users to prove facts (funds, origin, solvency) without exposing their
full transaction graph.

A) View Keys (read-only, scoped)

• Scope types: tx_id, time_window, balance_threshold, proof_of_funds.

• Derivation: From a disclosure branch key; cannot spend or reveal secrets.

• Revocation: Local revocation + optional on-chain revocation hash partners
must honor.

Interface (wallet SDK):

B) Audit Tokens (consent-bound assertions)

• Payload (example): { auditor_pubkey, scope, ttl, zk_assertions[], nonce,
sig_user }

• Use cases: KYC pointer proof, origin proof for exchange withdrawal, Travel-
Rule partner checks.

• Expiry: Short-lived by default; partners must refresh with user consent.

type ViewScope =

 | { kind: "tx_id"; ids: string[] }

 | { kind: "time_window"; from: number; to: number }

 | { kind: "balance_threshold"; token: string; gte: string }

 | { kind: "proof_of_funds"; token: string; amount: string };

generateViewKey(scope: ViewScope, ttlSec: number):
Promise<{ viewKeyId: string; key: string; expiry: number }>;

revokeViewKey(viewKeyId: string): Promise<{ revoked: boolean }>;

Interface (wallet SDK):

Partner verification (server API sketch):

6.3 KYC / Travel-Rule Integrations (Partner
Adapters)

• KYC pointers (hash, not PII): When a regulated partner requires identity, the
wallet can attach a KYC pointer hash inside an Audit Token; the partner
resolves it with their own records.

• Travel-Rule adapters: Optional connectors (e.g., Notabene/OpenVASP-style)
can be invoked only for covered transactions and only with user consent.

• Policy control: Adapters are off by default; enabling requires an explicit
toggle and a per-transfer prompt showing what will be disclosed.

Adapter concept:

POST /audit/verify

Body: { auditor_pk, audit_token, request: { tx_ids?: string[], amount?: string } }

→ 200 { valid: true, zk_assertions: [...], scope: {...}, expires_at }

enableTravelRuleAdapter(providerId: "notabene" | "openvasp",
configRef: string): Promise<void>;

requestTravelRuleDisclosure(params): Promise<{ required: boolean;
fields: string[] }>;

type AuditAssertion =

 | { kind: "kyc_pointer"; hash: string } // proof
user passed KYC at provider X

 | { kind: "origin_clean"; policy: string } // not from
sanctioned sets per policy

 | { kind: "proof_of_funds"; token: string; gte: string };

issueAuditToken(auditorPk: string, scope: ViewScope, assertions:
AuditAssertion[], ttlSec: number)

 : Promise<{ auditToken: string; expiry: number }>;

6.4 Geo-Fencing & Restricted Jurisdictions

• Blocked regions list: Maintained and updated in-app; includes hard bans and
conditional allowances per legal counsel.

• Enforcement points:

1. App level: Shielded Mode toggle disabled; transparent mode unaffected.

2. Server adapters: Prover/relayer lanes can deny requests from restricted
locales.

3. On-chain checks: Where applicable, program parameters may restrict
specific flows.

• Signals used: IP geolocation, user-declared country, and (if present) KYC
country. Fail-safe: If ambiguous, default to deny shielded / allow transparent.

6.5 Compliance Transparency Page & Reporting

• Public transparency page:

◦ Presale contract address:
B61SyRxF2b8JwSLZHgEUF6rtn6NUikkrK1EMEgP6nhXW

◦ Current restricted jurisdictions and rule rationale

◦ KYC providers, audit firms, and links to audit reports (presale,
token, verifier)

◦ DAO-ratified parameters: thresholds, fee-burn %, staking minimums

• Operational metrics (privacy-preserving):

◦ Root update cadence, proof accept rate, duplicate nullifier rejects, verifier
CU usage

◦ Adapter invocation counts (no PII), audit-token issuance totals by scope

• Change control: Changelogs for circuit versions, parameter updates, and
adapter configurations with effective dates.

• Contacts: Security PGP, responsible disclosure policy, and legal inquiries
channel.

https://explorer.solana.com/address/B61SyRxF2b8JwSLZHgEUF6rtn6NUikkrK1EMEgP6nhXW

Outcome. Compliance is delivered via user-consented, scoped proofs—not
blanket deanonymization—backed by transparent policies, auditable artifacts, and opt-in
integrations that keep Noctura usable in regulated markets.

7. Tokenomics

7.1 Supply & Allocation

Total Supply: 256,000,000 $NOC (fixed)

Distribution Model:

Notes:

• Team tokens are locked for 18 months after launch, ensuring alignment
with project success.

• Reserve is for critical upgrades or unforeseen events and remains
untouched unless approved by governance.

Category Percentage Tokens Unlock Details

Community 40% 102,400,000 Released through
presale

Staking 20% 51,200,000 Reward pool for
stakers

Liquidity 14% 35,840,000 DEX & CEX liquidity

Marketing 6% 15,360,000 Growth, outreach,
strategic partners

Community
Rewards

5% 12,800,000 Airdrops, contests,
engagement

Team 8% 20,480,000 1.5 year lockup
after TGE

Reserve 7% 17,920,000 Emergency &
protocol upgrades

Total 100% 256,000,000

7.1.1 Unlock & Vesting Schedule:

• Presale (40% / 102,400,000): Locked until TGE, then claimable. Buyers may

optionally lock into post-TGE staking tiers (365/182/90 days).

• Team (8% / 20,480,000): 18-month lock after TGE, followed by linear vesting

over [specify period, e.g., 12-24 months].

• Staking Rewards (20% / 51,200,000): Released through emissions pool

according to epoch-based distribution (see §7.4 & §9.3).

• Liquidity (14% / 35,840,000): [Specify unlock - e.g., "Released at TGE for

DEX/CEX liquidity provisioning" or staged release].

• Marketing, Community Rewards, Reserve: Linear or cliff vesting based on

allocation category with automatic release according to predetermined schedule.

Note on Vesting Implementation: This version of the whitepaper does not publish
an exact %-per-month (or full category-by-category) unlock schedule. Vesting follows
predetermined schedules with no early withdrawal mechanisms to prevent manipulation.
Detailed unlock schedules will be published on the Transparency Page prior to TGE with
on-chain verification.

7.2 $NOC Utility (Fees, Staking/Gov, Discounts,
Fee-Burn Option)

• Shielded Transaction Fuel. 
$NOC pays shielded transfer fees and compensates prover/relayer
lanes. Wallet surfaces fee quotes in $NOC before signing.

• Staking & Governance. 
Stake $NOC to (i) earn emissions and operator fees, (ii) participate in DAO
votes (parameters, fee-burn %, operator minimum stake, circuit upgrades), and
(iii) back relayer/prover roles (slashing risk → honest behavior).

• Discounts & Priority. 
Paying fees in $NOC can discount shielded fees and unlock priority lanes
(faster aggregation/proving).

• Ecosystem Access. 
dApps integrating Noctura SDK (private swaps, shielded lending, scoped audits)
consume/route $NOC as the default privacy fuel.

• Fee-Burn (optional, DAO-gated). 
A programmable fraction of shielded fees (e.g., 0.25–1.00%) can be burned

to create mild deflation aligned with usage. Rate is visible on-chain and
adjustable only via DAO.

7.3 Transaction Fees
Transparent Mode: ~$0.0005

• Standard Solana-level fees

• Full DeFi/NFT compatibility

Shielded Mode: $0.05–$0.10

• Covers on-chain verification (~150-300k compute units)

• Compensates prover/relayer operators

• Includes optional fee-burn (0.25-1%)  

Priority Lanes: $0.15–$0.25

• GPU-accelerated proof generation

• Faster confirmation (1-2s typical)

7.4 Emissions Policy & Treasury Controls (DAO-
governed)

A. Emissions (Staking & Operators)

• Pool cap: 51,200,000 $NOC total (20% of supply).

• Curve: Front-weighted but decaying emissions with epoch updates; parameters
on-chain (epoch length, base rate, decay).

• Operator share: Portion of emissions/fees earmarked for prover/relayer
operators proportional to delivered QoS (latency, reliability).

• Auto-adjust: If total staked rises, APR falls proportionally; if it falls, APR rises—
keeping issuance predictable.

B. Staking Tiers (defined in Staking section)

• Post-TGE APR options are enforced via lock contracts (e.g., 128%/365d, 68%/
182d, 34%/90d), with DAO authority to tune base rates and lock multipliers
within published bounds.

C. Treasury Policy

• Multisig + Timelock: Treasury movements require multi-party approval and
time-delayed execution; all txs labeled and disclosed.

• Budget rails: % caps for liquidity, audits, integrations, and grants; any override
requires DAO vote.

• Stability tools: Treasury may supply/withdraw liquidity to meet depth targets
(slippage caps), not for price support.

• Reporting: Quarterly on-chain reports: remaining runway, emissions paid, fee-
burn totals, grants issued.

D. Parameter Governance

• DAO motions (quorum/threshold defined in Governance):

◦ Emission decay/epoch length; operator reward split

◦ Fee-burn % and fee bands

◦ Minimum operator stake & slashing schedule

◦ Circuit version activation (post-audit)

• Safety rails: Emergency pause and parameter ceilings/floors are hard-coded
and can only be changed by supermajority with a timelock.

Outcome. $NOC economics are usage-driven (fees + operators), transparent (on-
chain parameters, reports), and governable (DAO), balancing incentives for users,
operators, and long-term protocol resilience.

8. Presale Structure

The Noctura presale is structured to reward early adopters and foster a wide
community. 
A total of 102,400,000 $NOC (40% of total supply) will be distributed across 10
stages, with a gradually increasing price per stage to incentivize early participation.

Presale Highlights:

• Fair Launch: No VCs, no insiders, no early privileges — just equal access tfor
everyone through our transparent presale.

• Multi-stage Incentives: Early buyers receive the lowest price, creating organic
demand and buzz.

Vesting Implementation:

• Presale tokens locked until TGE

• Linear or cliff vesting based on allocation category

• Automatic release according to predetermined schedule

• No early withdrawal mechanisms (prevents manipulation)

Accepted Payment Options

The presale supports multiple blockchain networks and payment methods to maximize
accessibility:

• Solana Network: SOL, USDT (Solana), USDC (Solana)

• Ethereum Network: ETH, USDT (Ethereum), USDC (Ethereum)

• BNB Chain: BNB, USDT (Binance Chain), USDC (Binance Chain)

• Fiat Payments: Secure card payment option available for non-crypto
participants

Stage Price ($) Stage
Increase (%)

Cumulative
Gain (%)

Tokens per
Stage

1 $0.1501 0.00% 0.00% 10,240,000

2 $0.1723 14.79% 14.79% 10,240,000

3 $0.1945 12.88% 29.58% 10,240,000

4 $0.2167 11.41% 44.37% 10,240,000

5 $0.2389 10.24% 59.16% 10,240,000

6 $0.2611 9.29% 73.95% 10,240,000

7 $0.2833 8.50% 88.74% 10,240,000

8 $0.3055 7.84% 103.53% 10,240,000

9 $0.3277 7.27% 118.32% 10,240,000

10 $0.3499 6.77% 133.11% 10,240,000

Purchase Limits

• Minimum Buy: $25 USD

• Maximum Buy: $25,600 USD

This on-chain, 10-stage structure provides transparent pricing, exact arithmetic to
the cent, and clear compliance hooks—ready for investors, auditors, and exchange
review.

8.1 Referral Program (Community Growth Incentive)

To further encourage organic adoption and community participation, Noctura introduces
a Referral Program during the presale phase. 
Each registered participant receives a unique referral link that can be shared with
others. When a new buyer participates in the presale through a referral link, the
referrer automatically earns a 10% bonus in $NOC tokens, calculated based on the
total value of the referred purchase.

Program Highlights:

• Reward: 10% of the referred purchase amount, paid in $NOC tokens.

• Distribution: Bonuses are automatically credited to the referrer’s wallet after
the referred transaction is confirmed.

• Eligibility: Available to all verified presale participants.

This referral program aligns with Noctura’s vision of decentralized community growth
and equitable participation while maintaining full transparency and auditability.

9. Staking & Rewards

9.1 Pools, Eligibility, and Slashing (Provers/
Relayers)

• Pools

◦ Stake Pool — Users: Non-custodial pool for $NOC holders. Locks
enforce APR tier (see §9.2).

◦ Operator Pool — Provers/Relayers: Operators must stake $NOC to
register lanes and earn a share of protocol fees; subject to slashing.

• Eligibility

◦ Wallet signature + lock commitment on-chain; address-bound.

◦ Presale stakers auto-migrate to post-TGE tiers at claim (no action required).

◦ Operators publish service endpoints and SLOs (latency, availability) signed
with their staked identity.

• Slashing (operators)

◦ Validity faults: malformed/invalid proof batches submitted →
proportional slash.

◦ Liveness faults: repeated SLO violations (timeouts, abandonment) →
escalating penalties.

◦ Fraud/replay: double-spend relay attempts, user funds theft → maximum
slash + registry ban.

◦ Slashed funds are redistributed to honest stakers and/or burned per
DAO policy.

9.2 APR Options

APR tiers are fixed-rate targets for the lock duration, funded from emissions and
fees. The DAO may adjust tier rates/limits within published bounds (see §9.3).

Notes

• APRs are nominal targets funded from the emissions pool + protocol fees;
actual realized APY depends on compounding choice and epoch timing.

• Operator fees and fee-burn (if enabled) can shift effective yield; all parameters
are on-chain and transparent.

9.3 Reward Funding, Emission Curves, and DAO
Parameters

• Funding sources

◦ Emissions pool: 51,200,000 $NOC (20% of supply) allocated to
staking & operators.

◦ Protocol fees: Portion of shielded transaction fees routed to stakers and
operator lanes.

◦ Optional fee-burn: 0.25–1.00% of fees burned (DAO-set) for
deflationary pressure.

• Emission mechanics

◦ Epoch-based accounting (e.g., daily): rewards minted/credited per
epoch.

Tier Lock Target APR
(nominal)

Notes

A 365 days 128% Highest reward;
longest lock; priority

in fee rebates

B 182 days 68% Medium lock/return

C 90 days 34% Shortest lock;
flexible entry/exit

cadence

◦ Auto-balancing: If total staked rises, per-unit rewards fall (and vice-
versa) to keep issuance within budget.

◦ Curve stewardship: DAO can tune epoch length, base rate, and
operator split within guardrails (caps, floors, timelock).

• Operator share

◦ A fixed slice of epoch rewards (or fees) pays registered provers/
relayers based on delivered throughput/reliability (oracle-reported
SLOs).

• Transparency

◦ Live dashboard: emissions spent, fee revenue, burn totals, and pool APRs;
historical CSVs/IPFS snapshots published quarterly.

9.4 Unstaking & Cool-Down, Auto-Compound,
Fee-Burn Tie-ins

• Unstaking

◦ Lock-enforced: Funds are unlockable only after the chosen lock term
(365/182/90 days).

◦ Cool-down: A 48-hour cool-down applies before withdrawal to deter
flash-stake gaming.

◦ Early exit: Not permitted (principal protected); DAO may define
emergency early-exit with penalty in extraordinary circumstances.

• Reward handling

◦ Auto-compound (opt-in): Reinvest epoch rewards into the same lock
band to increase effective APY.

◦ Manual claim: Claimable at any time without resetting lock; claimed
rewards follow wallet’s current mode (transparent by default).

• Fee-burn integration

◦ If fee-burn is enabled, burn events occur before reward splits, slightly
reducing inflation and supporting long-term value accrual.

• Security & operations

◦ All staking contracts are audited, parameter changes are timelocked,
and emergency pause affects new stakes only; existing stakes continue
accruing per schedule.

Outcome. Staking aligns users, operators, and protocol health: clear lock-based APR
choices for holders, service-quality incentives for operators, and DAO-governed
emissions that stay within budget and adapt as real fee revenue grows.

10. Technical Feasibility Notes -
Corrections & Rationale

10.1 Throughput Reality: Why “65,000 TPS
shielded” is unrealistic

• ZK cost isn’t free. Even with off-chain proving, on-chain verification
consumes compute units (CUs), account writes (Merkle root, nullifiers), and
transaction bandwidth.

• Account update bound. Each shielded spend touches: verifier program,
nullifier set, Merkle tree accounts, and fee accounts. These state writes, not just
proof checks, cap throughput.

• Practical ceiling (launch). With per-tx verification + tree updates, we target
~100–300 shielded TPS under typical mainnet limits. Higher TPS requires
batching/aggregation (below).

• Claim withdrawn. We do not claim “65,000 TPS shielded.” That figure
ignores on-chain state and verification costs.

10.2 Proving & Verification Bottlenecks (Cost
Model; Batch/Aggregate/Recursive Proofs)

• Cost model (simplified):

◦ Proving time (client/prover): T_prove ≈ α·C_circuit +
β·log2(MerkleDepth)

◦ Verify time (on-chain): T_verify ≈ γ·Constraints +
δ·verify_key_load + ε·proof_elements

◦ State cost: W_state ≈ writes(nullifiers + commitments +
root)

• Single-tx verification yields predictable latency but lower TPS due to fixed per-
tx costs.

• Batch verification: Combine k transfers into one proof → amortizes
T_verify and W_state per transfer; increases latency per user slightly.

• Aggregation/recursive proofs: Aggregate many sub-proofs into one outer
proof; best TPS per CU, at the expense of prover complexity and longer batch
windows.

• Conclusion: We start with single-tx + small batches; graduate to aggregation as
demand grows.

10.3 Proof System Simplification: SNARK-first;
STARKs optional

• SNARK-first (Groth16/PLONK family): Small proofs, cheap verification,
well-understood tooling. Ideal for frequent private payments.

• Why not dual-stack at launch? Maintaining both SNARK + STARK circuits
doubles engineering and audit scope with limited initial benefit.

• STARKs (optional module): Considered for large audit assertions or
post-quantum posture where proof size is acceptable and transparency is
valued. Introduced only when there is a clear, measured benefit and
dedicated budget for audits.

10.4 On Unlinkability: ZK already provides it;
“Advanced Mixing” is redundant

• Robust shielded transfers (commitments/nullifiers + balance conservation +
membership proofs) already break input→output linkability.

• Mixing adds little beyond timing/fee smoothing and larger anonymity sets; it
does not replace sound ZK design.

• Policy: Noctura does not depend on mixer semantics for privacy. If ever used,
mixing-like batching is opt-in UX (fee/timing), not the anonymity primitive.

10.5 Performance Optimizations Roadmap
(Batching, Aggregation, GPU Provers, Caching)

• Phase A — Launch

◦ Circuit hygiene (Poseidon/Pedersen), fixed-base MSM optimization

◦ Merkle depth tuned for proof speed vs. anonymity set

◦ Modest k-batch verification (e.g., 4–8 transfers/proof)

• Phase B — Scale

◦ Proof aggregation/recursive SNARKs to amortize on-chain
verification

◦ GPU/ASIC prover lanes; prover marketplace with price×latency routing

◦ Witness caching & incremental path updates (PCU) for faster re-proofs

• Phase C — Maturity

◦ Adaptive batch sizing (load-aware), epoch checkpoints for fast sync

◦ Optional STARK module for large, infrequent attestations

◦ DAO-tuned parameters: batch windows, operator minimum stake, fee
bands

Bottom line: We ship SNARK-first with conservative, real-world throughput; scale via
batching and aggregation; and only add complexity (e.g., STARKs, mixer-style
batching) when the measured benefit justifies the audit and maintenance cost.

11. Developer References — Section B
(API Schemas, zk Proof Formats)

11.1 Wallet API (Transparent vs Shielded Ops;
Params & Error Codes)

Ops (TypeScript)

Common error codes

// Transparent (public) operations

sendTransparentTx(tx: { to: string; mint: string; amount: string;
memo?: string }): Promise<TxId>;

getTransparentBalance(owner: string, mint: string):
Promise<string>;

// Shielded (private) operations

sendShieldedTx(tx: {

 outputs: Array<{ pk_shielded: string; mint: string; amount:
string; memo?: string }>;

 feeMint?: "NOC"; // fee token (default NOC)

 anchor?: string; // recent merkle root (hex32)

 prover?: string; // optional prover lane id

 maxLatencySec?: number; // user QoS bound

}): Promise<{ txId: TxId; newRoot: string }>;

crossModeTransfer(req: {

 direction: "public_to_shielded" | "shielded_to_public";

 mint: string; amount: string; recipient?: string;

}): Promise<TxId>;

getShieldedBalance(ownerViewKey: string, mint: string):
Promise<string>;

getRecentAnchor(): Promise<string>; // current merkle root
(hex32)

// Selective disclosure

generateViewKey(scope: ViewScope, ttlSec: number):
Promise<{ viewKeyId: string; key: string; expiry: number }>;

revokeViewKey(viewKeyId: string): Promise<{ revoked: boolean }>;

issueAuditToken(input: AuditTokenRequest): Promise<{ token:
string; expiry: number }>;

ZK_PROOF_TIMEOUT, ZK_PROOF_INVALID, ANCHOR_STALE,
NULLIFIER_REPLAY,

GEO_RESTRICTED, KYC_REQUIRED, SLA_UNAVAILABLE, FEE_QUOTE_EXPIRED,

INSUFFICIENT_FUNDS, MINT_UNSUPPORTED, RATE_LIMITED,
INTERNAL_ERROR

11.2 Transaction/State APIs (Commitments,
Nullifiers, Merkle Paths)

Indexer/Node (REST/JSON)

Event topics (on-chain logs)

1.3 zk Proof Object Formats (commitment,
nullifier, merkle_root, proof_bytes)

Note & Commitment (conceptual)

GET /v1/state/anchor

→ { root: "0x<32>" , slot: 259921430 }

GET /v1/state/commitments?fromSlot=...&toSlot=...

→ { items: [{ C: "0x<32>", slot: ..., idx: ... }],
nextPage: ... }

GET /v1/state/nullifiers?fromSlot=...&toSlot=...

→ { items: [{ N: "0x<32>", slot: ... }], nextPage: ... }

POST /v1/state/merkle-path

Body: { C: "0x<32>", root: "0x<32>" }

→ { path: ["0x<32>", ...], indices: [0|1,...], depth: 32 }

ShieldedCommit(C, newRoot, slot)

NullifierSet(N, slot)

RootRotated(oldRoot, newRoot, epochId)

note = (pk_recipient, mint, amount, r)

C = H(pk_recipient || mint || amount || r) //
Poseidon/Pedersen

N = PRF(sk_spend, note_id) //
unlinkable nullifier

Spend Proof (binary envelope → base64/hex in APIs)

Verification constraints (summary)

• merkle_path(note) → merkle_root

• all nullifiers unique & not in set

• Σinputs = Σoutputs + fee (range-checked)

• authorized spend under sk_spend (witness)

11.4 Verifier Program Interface (On-Chain) &
Gas/Fee Estimates

Solana instruction layout (Anchor-like pseudo-IDL)

type SpendProof = {

 // Public inputs

 merkle_root: string; // hex32

 nullifiers: string[]; // array of hex32

 commitments: string[]; // new notes: array of hex32

 fee_commitment: string; // hex32 (masked fee)

 memo_commitment?: string; // hex32 (optional)

 // Proof bytes

 proof: string; // hex; Groth16/PLONK proof

 vk_id: string; // verifier key id / hash (hex32)

 anchor_slot: number; // L1 slot used for the root

};

pub fn submit_shielded_batch(

 ctx: Context<SubmitBatch>,

 proof: Vec<u8>, // zk proof bytes

 vk_id: [u8; 32], // verifier key id

 merkle_root: [u8; 32],

 nullifiers: Vec<[u8; 32]>,

 commitments: Vec<[u8; 32]>,

 fee_commitment: [u8; 32],

 anchor_slot: u64,

) -> Result<()>;

Accounts

• VerifierState (holds current root, vk registry, epoch params)

• NullifierSet (probabilistic or bitmap shards; write-once)

• CommitmentTree (incremental tree nodes)

• FeeVault, Treasury, OperatorRegistry

Fee/compute guidance (targets, not promises)

• Single-spend tx verify + state writes: ~150–300k CU

• Small batch (4–8 spends): ~350–700k CU

• Tx fee quote exposed in wallet (includes L1 fees + prover/relayer fee)

11.5 Audit/Disclosure API (Scopes, ZK Assertions,
Consent Tokens)

Scopes

Audit assertions

type ViewScope =

 | { kind: "tx_id"; ids: string[] }

 | { kind: "time_window"; from: number; to: number }

 | { kind: "balance_threshold"; mint: string; gte: string }

 | { kind: "proof_of_funds"; mint: string; amount: string };

type AuditAssertion =

 | { kind: "kyc_pointer"; hash: string } // partner-
resolvable

 | { kind: "origin_clean"; policy: string } // policy
id/version

 | { kind: "proof_of_funds"; mint: string; gte: string };

Token issuance & verify

Revocation

11.6 Example Flows (Transparent→Shielded,
Private Payment, Scoped Audit)

A) Transparent → Shielded (Deposit)

1. getRecentAnchor()

2. crossModeTransfer({ direction: "public_to_shielded",
mint, amount })

3. Wallet builds SpendProof (membership of deposit UTXO, fee concealment),
submits submit_shielded_batch.

B) Private Payment (Shielded → Shielded)

1. Sender builds outputs { pk_shielded_recipient, mint, amount } (+
change).

issueAuditToken(auditorPk: string, scope: ViewScope, assertions:
AuditAssertion[], ttlSec: number)

 → { token: string(base64), expiry: number }

POST /v1/audit/verify

Body: { auditor_pk, token }

→ { valid: boolean, scope, assertions, expires_at }

POST /v1/audit/revoke

Body: { token_id }

→ { revoked: true }

2. sendShieldedTx({ outputs, feeMint: "NOC", anchor }).

3. Verifier checks proof, inserts nullifiers, appends new commitments, rotates root.

C) Shielded → Transparent (Withdrawal)

1. crossModeTransfer({ direction: "shielded_to_public",
mint, amount, recipient }).

2. Proof shows membership & nullifier uniqueness; L1 program releases funds to
recipient.

D) Scoped Audit (Proof-of-Funds)

1. Exchange requests: “prove ≥ X without history.”

2. User: issueAuditToken({ auditorPk, scope:
{kind:"proof_of_funds", mint, amount:X}, assertions:
[...] , ttlSec }).

3. Exchange: POST /v1/audit/verify → receives valid, scope, assertions; no raw
tx graph exposed.

Versioning & Stability

• All objects carry vk_id/schema_v. Circuit or API changes bump versions; old
paths deprecate with notice.

• Open-source IDLs/SDKs are published with test vectors and conformance tests.

12. Roadmap

Stage 1 - | Foundation & On-Chain Presale

Deliverables

• On-chain presale live (10 stages), transparency page, team KYC published.

• Presale & token programs audited; incident-response + timelock upgrade
playbooks.

• Verifier program skeleton + Merkle/Nullifier accounts on devnet (no funds risk).

• Wallet SDK preview (transparent ops + stubs for shielded ops).

• Selective Disclosure v0 (View Key/Audit Token schemas, mock verifier).

• Operator registry spec (staking & SLOs) and slashing policy draft.

End-of-Stage Goal: Noctura Wallet Beta (Testnet)

• Dual-mode UI (Transparent/Shielded toggle), deposit/withdraw flows wired to
test contracts, basic proofs via hosted prover lane, scoped View Key issuance.

Ready-to-Ship Criteria

• Presale contract: audit signed; public contract address posted.

• Wallet Beta passes smoke tests on testnet; public test build + docs.

Stage 2 | Devnet Shielded Pools; Alpha Prover
Lanes

Deliverables

• Shielded pools live on devnet with real circuits (SNARK-first).

• Small-batch verification (4–8 spends/proof); epoch checkpoints.

• Prover/relayer alpha marketplace (price × latency), operator staking MVP.

• Selective Disclosure v1 (scoped View Keys, Audit Tokens; verify endpoint).

• Compliance adapters (Travel-Rule/KYC pointer) behind opt-in toggles.

Ready-to-Ship Criteria

• ≥3 external operators staked; latency/throughput SLO dashboards live.

• End-to-end private payment demo (devnet) with scoped audit at partner sandbox.

Stage 3 | Testnet Verifiers; Wallet RC (Dual-Mode)

Deliverables

• Verifier program on public testnet; batching + aggregation benchmarks.

• Wallet Release Candidate with full dual-mode flows and cross-mode
unlinkability.

• Proof aggregation roadmap; GPU prover lanes pilot; witness caching (PCU).

• Security pass: circuit review, verifier review, SDK signing flows audit.

Ready-to-Ship Criteria

• Private payments at 100–300 shielded TPS (testnet), 1–3 s median latency.

• Bug bounty program launched; P0/P1 triage + disclosure SLAs published.

Stage 4 | Mainnet Shielded Layer; Listings &
Partners

Deliverables

• Mainnet launch of Shielded Privacy Layer (SNARK-first).

• Staking program live (post-TGE tiers: 128%/365d, 68%/182d, 34%/90d).

• Fee routing (stakers + operators), optional fee-burn parameter exposed to
DAO.

• Initial CEX/DEX liquidity (from 14% allocation), partner integrations (wallets/
DEXs).

Ready-to-Ship Criteria

• Two independent audits signed (verifier + circuits).

• ≥2 exchange listings (one tier-1/2), ecosystem partner live (DEX or lender).

Stage 5 | Enterprise Console; DAO Bootstrap;
Grants

Deliverables

• Enterprise Console: policy engine (limits, dual-control), scoped view
management.

• DAO bootstrap: quorum/thresholds, parameter caps/floors, timelock
governance.

• Grants program (privacy dApps, explorers, analytics with privacy guarantees).

• Transparency: quarterly emissions/fees/burn reports; circuit versioning policy.

Ready-to-Ship Criteria

• First DAO votes executed (operator min-stake, fee-burn %, batch windows).

• 3rd-party ecosystem apps using the Audit/Disclosure API in production.

Stage 6 | Scale-Out; Cross-Chain Privacy;
Institutional Pilots

Deliverables

• Throughput scale: aggregation/recursive SNARKs enabled; adaptive batch
sizing.

• Cross-chain privacy R&D (bridged attestations; STARK module for large audits if
justified).

• Institutional pilots (treasury/payroll, PoF attestations with custodians).

• Operator marketplace expansion, SLO enforcement & slashing in production.

Ready-to-Ship Criteria

• Sustained mainnet throughput improvements; operator churn < X%/quarter.

• Pilot case studies published; measurable fee revenue covering ≥Y% emissions.

KPI Hints (internal, optional to publish)

• Stage 1: ≥10k testnet wallet installs; presale progress by stage.

• Stage 2–3: ≥100–300 shielded TPS testnet; ≥3 external operators.

• Stage 4: Mainnet MAU ≥25k; shielded tx share ≥20% of wallet tx.

• Stage 5–6: DAO participation rate ≥10% of staked supply; fee revenue covers
≥30–50% of emissions.

13. Investor Benefits & Presale
Rationale

13.1 Why Invest in $NOC Now

Noctura delivers the first shielded privacy layer on Solana with a dual-mode
wallet (Transparent ↔ Shielded). It’s engineered for usable privacy and selective

disclosure, making it compatible with exchanges and regulated partners while
preserving strong confidentiality on-chain.

Why $NOC at this stage:

• Wallet-first adoption engine 
Privacy is not a separate chain—it’s a toggle in the wallet. That UX, plus SDK
hooks for dApps, is the fastest path to real usage.

• Compliance-ready by design 
View Keys and Audit Tokens let users prove facts (proof-of-funds, origin)
without exposing their history—making Noctura far more exchange-friendly than
legacy privacy tools.

• SNARK-first, realistic performance 
Off-chain proving with on-chain verification targets hundreds of shielded
TPS at launch, scalable via batching/aggregation and GPU provers. No hype
TPS; only what Solana and ZK can credibly support.

• Direct economic flywheel 
Every shielded transfer and operator lane is powered by $NOC (fees, staking,
incentives). Optional fee-burn can add deflationary pressure as usage rises.

• Institutional fit 
Dual-mode wallet + selective disclosure enables payroll, treasury,
compliance attestations, and private DeFi—use cases that Monero/Zcash/
mixers struggle to support in regulated venues.

• On-chain presale, transparent math 
10 fixed stages (4-dec prices) sum exactly to $25.6M hard cap; 40% supply
allocated to presale. Parameters are public and auditable.

• Presale Buyer Benefit: Zero $NOC transaction fees on both modes
for 18 months post-wallet launch.

Why Noctura Succeeds Where Others Failed

Bottom line: Noctura is privacy that can survive in the real world-usable,
verifiable, and partner-friendly, on Solana’s performance rails.

14. FAQ

Q1: What is Noctura, exactly? 
Noctura is the first shielded privacy layer on Solana with a dual-mode wallet.
Users can transact in Transparent (public) or Shielded (private) mode, and
selectively disclose facts (e.g., proof-of-funds) without exposing their full history.

Q2: Is this a Layer-2/rollup? 
No. It’s a privacy overlay, not an L2 rollup. Proofs are generated off-chain and
verified on-chain by Solana programs that update shielded state (commitments,
nullifiers, Merkle root).

Q3: How is this different from Monero, Zcash, or Tornado Cash?

• Monero: strong privacy, limited selective disclosure → exchange friction.
Noctura provides view keys/audit tokens for scoped, consented proofs.

Feature Monero Zcash Tornado Cash Noctura

Exchange
Compatibility

❌ Delisted ⚠ Limited ❌ Sanctioned ✅ Designed
for listings

Compliance
Tools

❌ None ⚠ Minimal ❌ None ✅ Selective
disclosure

User
Experience

⚠ Complex ⚠ Complex ⚠ Technical ✅ One-tap
privacy

Scalability ⚠ Moderate ⚠ Low ⚠ Limited ✅ Solana-
native speed

Institutional
Adoption

❌ Blocked ⚠ Limited ❌ Impossible ✅ Enterprise-
ready

Ecosystem
Integration

❌ Standalone ❌ Standalone ⚠ ETH only ✅ Full Solana
ecosystem

• Zcash: has view keys, but adoption hampered by UX fragmentation. Noctura’s
dual-mode wallet makes switching trivial.

• Tornado Cash: mixer semantics are non-compliant by default. Noctura’s ZK-
native unlinkability avoids mixer heuristics and supports compliance-ready
attestations.

Q4: What’s the realistic private TPS? 
Launch targets are ~100–300 shielded TPS, with 1–3s median confirmation, scaling
via batching, aggregation, and GPU provers. We do not claim “65k TPS shielded.”

Q5: Do I need KYC to use Noctura? 
Transparent mode: typically no. Shielded mode or presale participation may require
KYC/geo checks depending on your jurisdiction and thresholds. The protocol stores
no PII—partners hold their own records; the wallet uses hash pointers inside audit
tokens when needed.

Q6: How does selective disclosure work? 
Users can issue View Keys (read-only, scoped by tx/time/balance) and Audit
Tokens (consent-bound, expiring assertions like proof-of-funds or KYC pointer). Partners
verify these without accessing the full transaction graph.

Q7: Is the presale on-chain? Where? 
Yes. Presale contract (SPL/Solana):
B61SyRxF2b8JwSLZHgEUF6rtn6NUikkrK1EMEgP6nhXW.

Q8: How is the presale priced? 
10 stages, each selling 10,240,000 $NOC at 4-decimal fixed prices that sum to
an exact $25,600,000 hard cap. Stage-to-stage increases are ~6–12%, with Stage-10
≈ +133% vs Stage-1.

Q9: When and how do I claim tokens? 
At TGE, via the Noctura dApp. You can optionally auto-stake into a lock tier at claim.

Q10: Does staking start during presale? 
Yes—staking opens at presale start. Presale positions accrue eligibility and roll
forward to post-TGE options; principal/rewards are claimable at/after TGE.

Q11: What are the staking options after TGE?

• 128% APR — 365-day lock

• 68% APR — 182-day lock

• 34% APR — 90-day lock 
APRs are funded by emissions + protocol fees and governed by the DAO within
published bounds.

Q12: Is there a presale boost (256% APR)? 
If enabled, it’s time-boxed to the presale accrual window only and stops at
TGE; rewards are claimable after the post-launch unlock. Post-TGE, the fixed lock-tier
APRs apply (see Q11).

Q13: What gives $NOC real utility? 
$NOC powers shielded fees, prover/relayer incentives, staking/DAO
governance, and premium wallet features (e.g., instant proving lanes). Optional
fee-burn (DAO-set) can add mild deflation tied to usage.

Q14: How are tokens allocated? 
Total supply 256,000,000 $NOC: 40% Presale, 20% Staking & Rewards, 14%
Liquidity, 8% Core Team (12-month lock + vest), 7% Reserve/Upgrades,
6% Marketing/Partnerships, 5% Community Engagement.

Q15: Are contracts and circuits audited? 
Yes. Audits cover presale/token programs, verifier/tree logic, wallet
cryptography/SDK, and ZK circuits. Reports (and re-audits after material changes)
are published on the transparency page.

Q16: How are operators (provers/relayers) kept honest? 
They stake $NOC to register. Misbehavior (invalid proofs, liveness failures, fraud) can
be slashed, with proceeds redistributed/burned per DAO policy.

Q17: What data does Noctura store on-chain? 
Only public artifacts needed for verification: commitments, nullifiers, and the
Merkle root. No private notes/PII are written on-chain.

Q18: Can enterprises use this without breaking compliance? 
Yes. The wallet supports policy controls (dual-control, limits), scoped view access
for finance/compliance, and audit tokens for regulators/partners.

Q19: What’s on the near-term roadmap? 
Stage 1 (2025 Q4): On-chain presale + Wallet Beta on testnet. 
Then: devnet shielded pools, testnet verifiers, mainnet shielded layer, listings, DAO
bootstrap, and scale-out via proof aggregation.

Q20: How are treasury and parameters governed? 
By the DAO with multisig + timelock rails. Voters control emission curves, fee-burn

%, operator min-stake, batch windows, and circuit activations; safety caps/
floors and emergency pause are hard-coded.

Q21: Where can I see transparency data? 
The transparency page publishes contract addresses, audits, restricted-
jurisdiction policy, DAO parameters, quarterly emissions/fees/burn
reports, and changelogs for circuits/parameters.

Q22: What are the main risks? 
Regulatory changes, cryptographic/implementation bugs, market volatility, and
operator centralization. Mitigations include audits, bug bounties, guarded upgrades,
staking/slashing, and conservative throughput targets.

Q23: How do I build on Noctura? 
Use the Wallet SDK (transparent & shielded ops, cross-mode transfers, disclosure
APIs). See Section 11 for schemas, proof formats, verifier interface, and example
flows.

Q24: Support & security contact? 
Security disclosures via PGP email (listed on the transparency page). General support
via docs, Discord/Telegram, and issue trackers linked from the website.

15. Governance

15.1 Phased Governance (Core → DAO)

Phase 0 — Launch Controls (pre-mainnet & presale).

• Multisig (core contributors + independent advisors) manages: presale program,
token mint, audit sign-offs, and non-contentious ops (e.g., transparency page).

• Scope intentionally narrow; no discretionary treasury moves beyond budget rails.

Phase 1 — Guarded Parameters (mainnet TGE → stability).

• Multisig + timelock administer protocol parameters within hard guardrails set
on-chain (caps/floors).

• Community signaling via off-chain snapshot; non-critical changes (e.g., fee-burn
%, batch windows, operator min-stake) require timelocked execution.

Phase 2 — DAO Control (post-audit, stable ops).

• On-chain DAO assumes control of: emissions schedule knobs, operator policy,
fee-split, treasury grants, and circuit activation after audits.

• Multisig remains as executor of DAO-passed proposals only; no unilateral
authority.

Phase 3 — Mature Decentralization.

• DAO governed end-to-end with constitutional guardrails (immutables):
emergency pause scope, max issuance rate, circuit security invariants, and
disclosure API baselines.

15.2 Use of Proceeds

Noctura’s treasury is deployed to accelerate delivery of the dual-mode wallet, harden
security, grow ecosystem adoption, and ensure deep, healthy liquidity for launch and
expansion. All treasury movements follow governance controls (e.g., multisig + timelock)
and are executed within predefined budget rails, with periodic transparency reporting.

Allocation breakdown

1) Liquidity provisioning (DEX/CEX depth; not for price support) — 22%

Used for initial liquidity deployment, market-making tooling, and exchange liquidity
requirements where applicable. This allocation is strictly for liquidity health and
operational readiness—not artificial price support.

2) Security, audits & bug bounty — 18%
External audits across wallet code, smart contracts/programs, zk circuits/verifier logic,
and infrastructure. Includes an ongoing bug bounty reserve.

3) Core engineering & infrastructure — 20% 
Wallet development (Transparent + Shielded UX), performance engineering, prover/
relayer lanes, monitoring, redundancy, and production-grade reliability.

4) Integrations & SDK adoption — 12% 
Developer SDKs, documentation, reference integrations, partner engineering, and
tooling to enable dApps and wallets to integrate Noctura privacy primitives safely.

5) Ecosystem grants — 8% 
Grants to teams building privacy-enabled Solana apps, integrations, analytics that
preserve privacy, and community tooling that expands the Noctura ecosystem.

6) Marketing & partnerships — 10% 
Growth campaigns, partnerships, community expansion, and strategic distribution to
drive adoption and awareness through measurable, trackable channels.

7) Legal & compliance operations — 5% 
Legal structuring, policy work, restricted-jurisdiction controls, and compliance adapter
support as required by partners and listing venues.

8) Reserve / contingency — 5% 
Buffer for unforeseen events, security incidents, critical upgrades, and operational
continuity—deployed only under governance controls.

Flexibility & controls

To remain adaptive, allocations may shift modestly based on real-world needs (e.g.,
audit scope expansion, integration demand, listing requirements). Any material
reallocation is executed under governance controls and recorded in treasury reporting.

15.3 Voting Power (Staked $NOC), Quorums,
Safeguards

Voting power.

• 1 staked $NOC = 1 vote (at proposal snapshot).

• Optional longer-lock multiplier (bounded, e.g., up to 1.5×) to reward long-
term alignment without plutocracy.

Quorum & thresholds.

• Standard proposals: quorum ≥ 10% of staked supply; simple majority to
pass.

• Sensitive proposals (emissions curve, fee-burn %, operator min-stake): quorum
≥ 15%; 60% supermajority.

• Critical proposals (circuit activation, verifier upgrade, emergency powers):
quorum ≥ 20%; 66% supermajority.

Safeguards.

• Timelock (e.g., 72h–7d) on all state-changing executions; immutable minimum
enforced in contracts.

• Parameter guardrails: caps/floors embedded on-chain (e.g., max fee-burn %,
max emission rate, min operator stake).

• Conflict checks: proposals auto-rejected if violating invariants (e.g., spend >
treasury, emission > cap).

• Sybil/flash-loan resistance: snapshot voting (block-height), stake lock
requirement during voting window.

Transparency.

• Public proposal texts, diffs, on-chain simulations, and risk notes; all executed
actions linked to proposal IDs.

15.4 Upgrade Process & Emergency Controls

Upgradeable components.

• Verifier program (proof verification, tree ops)

• Circuit registry (vk ids, circuit versions)

• Operator/treasury modules (staking, fee routing)

Standard upgrade pipeline.

1. Spec & audit published (diff, test vectors).

2. DAO vote approves upgrade; includes parameter diffs and activation
conditions.

3. Timelock starts; binaries/IDLs pinned (IPFS/commit hash).

4. Shadow deploy to canary/testnet; monitoring window.

5. Activation via DAO executor; automatic rollback plan defined.

Circuit activation.

• New circuits (vk ids) registered alongside current versions; dual-acceptance
window permits safe migration.

• Deactivation of old circuits only after cutover quorum (usage threshold) or
time-based sunset, whichever first.

Emergency controls (narrowly scoped).

• Emergency Pause (shielded submit only): freezes new shielded transactions
while preserving read access, staking accrual, and claims.

• Triggers: verified critical vulnerability, integrity loss (e.g., proof forgery), or
exploit in progress.

• Process: 2-of-N emergency council (multisig subset) → immediate pause;
mandatory DAO ratification within a fixed window (e.g., 7 days) or auto-
unpause.

• User safety: funds remain accessible; exits via transparent paths stay available
if not implicated.

Post-incident.

• Public post-mortem with timelines, root cause, and remediation.

• Re-audit required for affected modules; resume via timelocked DAO approval.

Immutable invariants.

• Cannot be changed by any vote: max supply, nullifier uniqueness rule,
conservation constraint (Σinputs = Σoutputs + fees), minimum timelock floor, and
disclosure API consent requirement.

Outcome. Governance balances agility (shipping upgrades, responding to incidents)
with credible neutrality (DAO control, hard guardrails, and transparent processes) so
the protocol can evolve safely without compromising user trust.

16. Risks & Disclosures

16.1 Regulatory, Technical, and Market Risks

• Regulatory

◦ Policy shifts. Privacy tooling may face new restrictions, licensing,
reporting, or geo-fencing mandates. Jurisdictional divergence can limit
features or access.

◦ Exchange posture. Listings and fiat ramps may require additional
attestations (view keys, audit tokens, KYC pointers). Loss of listings/liquidity
is possible.

◦ Sanctions/blacklists. Counterparty controls and Travel-Rule obligations
can change with little notice; adapters may be disabled regionally.

• Technical

◦ Cryptographic assumptions. Soundness relies on hardness of chosen
curves/hashes and SNARK security. A break or implementation flaw could
compromise privacy or integrity.

◦ Implementation bugs. Verifier logic, circuit constraints, Merkle/tree
updates, or wallet key management could contain defects despite audits
and testing.

◦ Throughput/latency limits. Shielded TPS and confirmation times
depend on proof generation, on-chain verification, and network load;
targets (hundreds TPS) are not guarantees.

◦ Operator centralization. Prover/relayer concentration may degrade
censorship resistance or quality of service if not countered by incentives
and staking policy.

◦ Upgrades & compatibility. Circuit/version migrations may cause
temporary disruptions; clients must update to maintain functionality.

• Market

◦ Price volatility. $NOC may fluctuate significantly due to market
conditions, liquidity depth, or sentiment.

◦ Adoption uncertainty. User/partner uptake of shielded flows and
disclosure APIs may be lower or slower than expected.

◦ Competition. Alternative privacy solutions or L1/L2 roadmap changes
could reduce Noctura’s relative advantage.

16.2 Operational & Treasury Risks

• Treasury management. Misallocation, custodial failures, or market
drawdowns can reduce runway. Treasury actions are timelocked and public but
cannot eliminate loss risk.

• Liquidity provisioning. Initial pool depth and market-maker performance may
be insufficient, causing slippage and volatility.

• Key management & governance. Multisig/DAO keys may be compromised
through phishing, device loss, or collusion. Safeguards include role separation,
hardware keys, timelocks, and immutable guardrails.

• Third-party dependencies. RPC providers, KYC vendors, and Travel-Rule
partners can introduce outages or policy changes that affect UX or availability.

• Incident response. Emergency pause halts new shielded submits but may not
prevent all loss modes. Recovery may require contract upgrades subject to
governance and re-audit.

16.3 Investor Disclaimer (No Guaranteed Yields)

• No promises of profit. $NOC is a utility token for fees, staking, governance,
and operator incentives within the Noctura ecosystem. It is not an investment
contract, deposit, or security claim on protocol revenues.

• Variable rewards. Staking APR bands (e.g., 128%/365d, 68%/182d,
34%/90d) and any time-boxed presale boosts are targets, not guarantees.
Actual returns vary with total staked, emissions schedules, protocol fees, and
DAO decisions.

• Risk of total loss. Token value can go to zero. Smart-contract or cryptographic
failures, regulatory bans, market crashes, or operational incidents can result in
partial or total loss of funds.

• Jurisdictional limits. Access to features (shielded mode, presale, staking) may
be restricted by location, KYC status, or partner policy. Users are responsible for
complying with local laws and tax obligations.

• Forward-looking statements. Roadmap items, throughput targets, listings,
and integrations are goals that may change without notice based on audits,
feasibility, and governance outcomes.

Proceed only if you fully understand and accept these risks. Always use hardware-
secured wallets, verify contract addresses (presale:
B61SyRxF2b8JwSLZHgEUF6rtn6NUikkrK1EMEgP6nhXW), and never commit more
than you can afford to lose.

17. Appendices

A. Glossary & Notation

• Anchor / Root (R) — Current Merkle tree root for shielded commitments used
as the public reference in proofs.

• Commitment (C) — Hash binding a note’s contents (recipient key, mint, amount,
randomness).

• Nullifier (N) — One-time, unlinkable marker proving a note was spent (prevents
double-spend).

• Note — Private record of value in the shielded set.

• Spend Proof — ZK proof showing membership, authorization, balance
conservation, and uniqueness of nullifiers.

• Verifier Program — Solana on-chain program that validates proofs and
updates state (R, C[], N[]).

• View Key — Read-only key granting scoped viewing (tx/time/balance) without
spend authority.

• Audit Token — Consent-bound, expiring assertion (e.g., proof-of-funds, KYC
pointer) verifiable by partners.

• Operator (Prover/Relayer) — A staked service that generates proofs / relays
shielded txs; subject to slashing.

• DAO — On-chain governance controlling parameters (emissions, fee-burn %,
operator policy).

• TGE — Token Generation Event.

B. Cryptographic Parameters (Curves, Hashes,
Tree Depths)

Parameters are versioned. Final values are pinned in the verifier registry and audit
reports.

• Proof System (launch): zk-SNARK (Groth16/PLONK family) on BLS12-381.

• Hash Function (commitments / Merkle): Poseidon (field-friendly), domain-
separated for C, N, and tree nodes.

• PRF for Nullifiers: Poseidon-based PRF keyed by sk_spend with explicit
domain tags.

• Merkle Tree:

◦ Depth: 32 (launch) with upgrade path to 40/48 via versioned trees.

◦ Arity: Binary.

◦ Witness Format: sibling hashes + bit-indices (LSB first).

• Range Proofs: Amount range constrained in-circuit (non-negative, cap < 2^64)
with overflow checks.

• Transcript Binding: Fiat-Shamir with domain tags for spend, deposit, withdraw
circuits.

• Key Derivation: Ed25519 (transparent), shielded spend/view keys from master
seed via hardened paths; disclosure branch separated.

C. Economic Parameters (Stage Prices, Emission
Caps)

• Total Supply: 256,000,000 $NOC (fixed).

• Presale Allocation: 102,400,000 (40%), sold in 10 equal stages
(10,240,000 each).

• Price Ladder (4-dec; exact hard cap $25,600,000):

1. $0.1501 → $1,537,024.00

2. $0.1723 → $1,764,352.00

3. $0.1945 → $1,991,680.00

4. $0.2167 → $2,219,008.00

5. $0.2389 → $2,446,336.00

6. $0.2611 → $2,673,664.00

7. $0.2833 → $2,900,992.00

8. $0.3055 → $3,128,320.00

9. $0.3277 → $3,355,648.00

10. $0.3499 → $3,582,976.00 
Totals: 102,400,000 tokens • $25,600,000.00

• Staking Emissions Pool: 51,200,000 $NOC (20% of supply).

• Post-TGE Staking APR Bands: 128% (365d), 68% (182d), 34% (90d);
DAO-tunable within capped ranges.

• Operator Rewards: Share of protocol fees/emissions split per delivered QoS;
DAO-tunable.

• Optional Fee-Burn: 0.25–1.00% of shielded fees (DAO-set), burned prior to
reward splits.

D. Contract Addresses & Registry

All addresses are published on the transparency page and versioned in a registry
account. Only the presale address is final at this time.

• Presale Program (Mainnet):
B61SyRxF2b8JwSLZHgEUF6rtn6NUikkrK1EMEgP6nhXW

• $NOC SPL Mint: TBA (post-audit, pre-TGE)

• Verifier Program (Shielded): TBA (testnet → mainnet after audits)

• Commitment Tree Account(s): TBA

• Nullifier Set Account(s): TBA

• Treasury / Multisig: TBA (DAO bootstrap stage)

• Registry Account (pins current versions): TBA

Change control: New deployments are added; old ones marked deprecated only
after cutover. Each entry includes program id, commit hash/IPFS ref, audit link, and
activation slot.

E. Example JSON Schemas (API/Proof Objects)

Canonical schemas live in the SDK repo; below are abridged, human-readable versions
for integrators.

E.1 Spend Proof Envelope

E.2 Merkle Path Request/Response

Request

Response

{

 "schema_v": "spend.v1",

 "vk_id": "0x<32>",

 "anchor_slot": 259921430,

 "merkle_root": "0x<32>",

 "nullifiers": ["0x<32>", "0x<32>"],

 "commitments": ["0x<32>", "0x<32>"],

 "fee_commitment": "0x<32>",

 "memo_commitment": "0x<32>",

 "proof": "0x<bytes>" // Groth16/PLONK bytes

}

{ "C": "0x<32>", "root": "0x<32>" }

{

 "path": ["0x<32>", "..."],

 "indices": [0,1,1,0, "..."],

 "depth": 32

}

E.3 View Key & Audit Token

View Key (scoped)

Audit Token (consent-bound assertions)

{

 "schema_v": "viewkey.v1",

 "id": "vk_01H...",

 "scope": { "kind": "time_window", "from": 1700000000, "to":
1700600000 },

 "key": "base64...",

 "expiry": 1701200000

}

{

 "schema_v": "audit.v1",

 "token_id": "at_01H...",

 "auditor_pk": "0x<32>",

 "scope": { "kind": "proof_of_funds", "mint": "So111...",
"amount": "10000" },

 "zk_assertions": [

 { "kind": "kyc_pointer", "hash": "0x<32>" },

 { "kind": "origin_clean", "policy": "v1.2" }

],

 "ttl": 86400,

 "sig_user": "0x<64>"

}

E.4 Wallet Operations (abridged)

Shielded Send

Cross-Mode Transfer

Errors (enum)

{

 "op": "sendShieldedTx",

 "req": {

 "outputs": [

 { "pk_shielded": "0x<pk>", "mint": "So111...", "amount":
"250" }

],

 "feeMint": "NOC",

 "anchor": "0x<32>",

 "prover": "lane:gpul1",

 "maxLatencySec": 3

 }

}

{

 "op": "crossModeTransfer",

 "req": { "direction": "public_to_shielded", "mint": "So111...",
"amount": "1000" }

}

{

 "error": "ANCHOR_STALE",

 "details": "Provided anchor 0x... is older than allowed epoch
window"

}

These appendices provide the pinned vocabulary, cryptographic and economic knobs,
canonical addresses, and integration schemas needed to build, audit, and operate
against Noctura’s shielded privacy layer on Solana. As components graduate from
testnet to mainnet, the registry and transparency page will be updated with final IDs
and audit links.

18. Call to Action

Privacy that survives the real world starts here. Noctura delivers a shielded
privacy layer on Solana with a dual-mode wallet and selective disclosure—
usable for everyone, acceptable to partners, and verifiable on-chain.

Start now

• Join the presale: noc-tura.io/presale

• Claim at TGE & optionally auto-stake into your chosen lock (128%/
365d, 68%/182d, 34%/90d).

• Test the Wallet Beta (testnet): try Transparent ↔ Shielded, deposits/

withdrawals, and View Keys.

Build with us

• Developers: integrate private settlement and scoped audits via the Noctura
Wallet SDK (Section 11).

• Operators: apply to run prover/relayer lanes (stake $NOC, earn fees;
slashing-secured).

• Enterprises: enable policy controls (dual-control, limits) and Audit Tokens
for compliance workflows.

Stay aligned

• Track audits, parameters, and addresses on the Transparency Page.

• Participate in DAO votes (emissions, fee-burn %, operator policy) once
governance opens.

• Join the community channels for releases, bounty calls, and partner programs.

Choose privacy-without losing legitimacy. 
Noctura — the first shielded privacy layer on Solana,
powered by a dual-mode wallet and the $NOC economy.

	1. Introduction
	2. Project Overview
	3. Noctura Privacy Wallet
	4. Protocol Architecture - Shielded Privacy Layer on Solana
	5. Security Model & Threat Analysis
	6. Compliance & Selective Disclosure
	7. Tokenomics
	8. Presale Structure
	9. Staking & Rewards
	10. Technical Feasibility Notes - Corrections & Rationale
	11. Developer References — Section B (API Schemas, zk Proof Formats)
	12. Roadmap
	13. Investor Benefits & Presale Rationale
	14. FAQ
	15. Governance
	16. Risks & Disclosures
	17. Appendices
	18. Call to Action

